ON CLIQUES IN GRAPHS

BY

P. ERDÖS

ABSTRACT

A clique is a maximal complete subgraph of a graph. Moon and Moser obtained bounds for the maximum possible number of cliques of different sizes in a graph of n vertices. These bounds are improved in this note.

Let G(n) be a graph of *n* vertices. A non empty set *S* of vertices of *G* forms a complete graph if each vertex of *S* is joined to every other vertex of *S*. A complete subgraph of *G* is called a clique if it is maximal i.e., if it is not contained in any other complete subgraph of *G*.

Denote by g(n) the maximum number of different sizes of cliques that can occur in a graph of *n* vertices. In a recent paper [1] Moon and Moser obtained surprisingly sharp estimates for g(n). In fact they proved (throughout this paper log *n* will denote logarithm to the base 2) that for $n \ge 26$

(1)
$$n - \lfloor \log n \rfloor - 2\lfloor \log \log n \rfloor - 4 \leq g(n) \leq n - \lfloor \log n \rfloor$$

In the present note we shall improve the lower bound on g(n). Denote by $\log_k n$ the k-times iterated logarithm and let H(n) be the smallest integer for which $\log_{H(n)}n < 2$. Let $n_1 = [n - \log n - H(n)]$ and for i > 1 define n_i as the least integer satisfying

(2)
$$2^{n_i} + n_i - 1 \ge n_{i-1}$$
.

Now we prove the following

THEOREM. $g(n) \ge n - \log n - H(n) - O(1)$.

H(n) increases much slower then the k-fold iterated logarithm thus our theorem is an improvement on (1). It seems likely that our theorem is very close to being best possible but I could not prove this. In fact I could not even prove that

$$\lim_{n \to \infty} (g(n) - (n - \log n)) = \infty.$$

The proof of our theorem will use the method of Moon and Moser [1]. We construct our graph G(n) as follows: The vertices of our G(n) are x_1, \dots, x_{n_1} ; y_1, \dots, y_{n_2} ; $z_1 \dots z_m$, where $n_1 = [n - \log n - H(n)]$, n_2 is defined by (2) and $m = n - n_1 - n_2$. Clearly m = H(n) + O(1). Any two x's and any two y's are joined. Further for $1 \le j < n_2$ y_j is joined to every x_i except to the x_i satisfying

Received November 15, 1966.

$$2^{j-1}+j-2 < i \leq 2^{j}+j-1$$

and y_{n_2} is joined to every x_i except to those satisfying

$$2^{n_2-1} + n_2 - 2 < i \le n_1 \ (n_1 \le 2^{n_2} + n_2 - 1).$$

Now we use the vertices z_k , $1 \le k \le m$, z_k is joined to y_j for $1 \le j \le n_{k+2}$ and to the x_i for $1 \le i \le n_{k+1}$. No two z's are joined. This completes the definition of our G(n).

Now we show that our G(n) contains a clique for every

$$(3) n_{m+2} < t \leq n_1$$

and since by m = H(n) + O(1) and (2) n_{m+2} is less than an absolute constant independent of $m_{n}(3)$ implies our Theorem.

Assume first $n_2 \le t \le n_1$. For $t = n_2$ the set of all y's and for $t = n_1$ the set of all x's gives the required cliques. For $n_1 < t < n_2$ we construct our clique of t vertices as follows: We distinguish two cases. If $n_1 - t < 2^{n_2 - 1}$ we consider the unique binary expansion

$$n_1 - t = 2^{j_1} + \dots + 2^{j_r}, 0 \le j_1 < \dots < j_r < n_2 - 1.$$

If $2^{n_2-1} \leq n_1 - t < 2^{n_2}$ (this last inequality always holds by the definition of n_1 and n_2) we consider the unique binary expansion

$$n_1 - t - (n_1 - 2^{n_2 - 1} - n_2 + 2) = 2^{n_2 - 1} + n_2 - 2 - t = 2^{j_1} + \dots + 2^{j_r},$$

$$0 \le j_1 < \dots + j_r < n_2 - 1.$$

In the first case consider the clique determined by y_{j_1}, \dots, y_{j_r} and all the x's which are joined to all the y_{j_u} , $u = 1, \dots, r$, in the second case we consider the clique determined by y_{j_1}, \dots, y_{j_r} , y_{n_2} and all the x's joined to y_{n_2} and to all the y_{j_u} , $u = 1, \dots, r$. A simple argument shows that this construction gives a clique having t vertices. (To see this observe that y_j , $1 \le j < n_2$ is joined to $n_1 - 2^{j-1} - 1$ x's and y_{n_2} is joined to $2^{n_2-1} + n_2 - 2$ x's and no x is joined to y_{n_2}).

Let now $n_{s+2} + 1 \le t \le n_{s+1} + 1$, $0 < s \le m$. If $t = n_{s+2} + 1$ then the complete graph having the vertices z_s , $y_1, \dots, y_{n_{s+2}}$ is a clique of size t (no x is joined to all these vertices), if $t = n_{s+1} + 1$ then the complete graph having the vertices z_s , $x_1, \dots, x_{n_{s+1}}$ is a clique of size t (no y is joined to all these vertices). If $n_{s+2}+1 < t \le n_{s+1}$ we consider the graph spanned by the vertices $z_s, y_1, \dots, y_{n_{s+2}}, x_1, \dots, x_{n_{s+1}}$ (z_s is joined to all these x's and y's) and argue as in the case s = 0. This completes the proof of (3) and of our Theorem.

It would be easy to replace 0(1) by an explicit inequality, but I made no attempt to do so since it is uncertain to what extent our Theorem is best possible.

REFERENCE

1. J. W. Moon and L. Moser, On cliques in graphs, Israel J. of Math. 3 (1965), 23-28.

TECHNION-ISRAEL INSTITUTE OF TECHNOLOGY,

Haifa